Department of Immunology and Cell Biology
Monoclonal and recombinant antibodies are widely used in biotechnology, medicine and biomedical science. Monoclonal antibodies produced using traditional hybridoma-based technologies are valuable research tools and clinical diagnostic reagents. Recombinant antibodies generated by gene engineering approaches are increasingly being used as therapeutic agents for treatment of cancer, autoimmune and infectious diseases. So, there is strong need for novel well-characterized antibodies with desired specificities and other characteristics.
Our team
Our team has a strong expertise in development and characterization of monoclonal and recombinant antibodies. We have generated more than 500 monoclonal antibodies against different targets: viral antigens, bacterial virulence factors, cellular proteins, cytokines, hormones. The largest antibody collection is generated against viral antigens, including measles, mumps, human parainfluenza viruses, henipaviruses, hantaviruses, parvoviruses, human bocaviruses, hepatitis B virus, hepatitis E virus (1) and others. These antibodies are valuable tools for investigating antigenic structure of viruses (2), development of diagnostic assays and prevalence studies of viral infections. Virus research is carried out in collaboration with Prof. Dr. R.Ulrich (Friedrich-Loeffler-Institute, Greifswald, Insel-Riems, Germany), Prof. Dr. D. Glebe (Giessen University, Germany), J.O.Koskinen (ArcDia International Oy Ltd, Turku, Finland) and other partners. We have also generated a collection of antibodies against bacterial cytolysins and exploited them both for structural studies and quantitation of cytolysins (3). In collaboration with our colleagues from the Department of Eukaryote gene engineering, we have developed a new technology for the use of virus-like particles as a carrier for target epitopes to increase their immunogenicity. This approach provides possibilities to generate antibodies against short and non-immunogenic protein sequences. For construction of recombinant antibodies, gene sequences encoding the variable parts of immunoglobulin heavy and light chains are cloned from hybridoma cells producing well-characterized monoclonal antibodies against the target of interest. Recombinant antibodies are developed in different formats - as single chain antibodies (scFv) and Fc-engineered antibodies where the scFv derived from hybridoma cells are joined to human IgG Fc fragment. Also, we have exploited recombinant virus-like particles as a carrier for antibody molecules, both scFv and Fc-engineered scFv. This innovative approach allows generation of recombinant multimeric antibodies displayed on virus-like particles as demonstrated for vaginolysin- specific antibodies and neutralizing antibodies against hepatitis B virus (4).
Main publications
- Simanavicius et al. Generation in yeast and antigenic characterization of hepatitis E virus capsid protein virus-like particles. Appl Microbiol Biotechnol., 2018, 102 (1), 185-198.
- Kailasan et al. Mapping antigenic epitopes on the human bocavirus capsid. J Virol., 2016, 90 (9), 4670-4680
- Zilnyte et al. The cytolytic activity of vaginolysin strictly depends on cholesterol and is potentiated by human CD59. Toxins (Basel). 2015, 7(1) :110-128
- Pleckaityte et al. Construction of polyomavirus-derived pseudotype virus-like particles displaying a functionally active neutralizing antibody against hepatitis B virus surface antigen. BMC Biotechnol., 2015, 15 (1): 85.